franka-233
¨̮
 
 
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
Atividade recente
2.346 hrs em registo
jogado pela última vez a 15 de jan.
4,2 hrs em registo
jogado pela última vez a 12 de jan.
Proezas   4 de 45
262 hrs em registo
jogado pela última vez a 4 de jan.
Comentários
franka-233 6 jul. 2022 às 2:26 
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
55YF 2 jul. 2022 às 7:22 
打个郊县