franka-233
¨̮
 
 
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
Kürzliche Aktivitäten
2.330 Std. insgesamt
zuletzt gespielt am 31. Dez. 2024
0,1 Std. insgesamt
zuletzt gespielt am 28. Dez. 2024
260 Std. insgesamt
zuletzt gespielt am 27. Dez. 2024
Kommentare
franka-233 6. Juli 2022 um 2:26 
忍不住了,开导!🥵🥵🥵
(sinx)' = cosx
  (cosx)' = - sinx
  (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
  -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
  (secx)'=tanx·secx
  (cscx)'=-cotx·cscx
  (arcsinx)'=1/(1-x^2)^1/2
  (arccosx)'=-1/(1-x^2)^1/2
  (arctanx)'=1/(1+x^2)
  (arccotx)'=-1/(1+x^2)
  (arcsecx)'=1/(|x|(x^2-1)^1/2)
  (arccscx)'=-1/(|x|(x^2-1)^1/2)
  ④(sinhx)'=coshx
  (coshx)'=sinhx
  (tanhx)'=1/(coshx)^2=(sechx)^2
  (coth)'=-1/(sinhx)^2=-(cschx)^2
  (sechx)'=-tanhx·sechx
  (cschx)'=-cothx·cschx
  (arsinhx)'=1/(x^2+1)^1/2
  (arcoshx)'=1/(x^2-1)^1/2
  (artanhx)'=1/(x^2-1) (|x|<1)
  (arcothx)'=1/(x^2-1) (|x|>1)
  (arsechx)'=1/(x(1-x^2)^1/2)
  (arcschx)'=1/(x(1+x^2)^1/2)
55YF 2. Juli 2022 um 7:22 
打个郊县