Publicstaticvoidmain
爸爸   Beijing, China
 
 
Rời mạng
1 lệnh cấm VAC được ghi nhận | Thông tin
1715 ngày từ lần cấm cuối
Hoạt động gần đây
25 giờ được ghi nhận
chơi lần cuối lúc 3 Thg12, 2024
62 giờ được ghi nhận
chơi lần cuối lúc 18 Thg11, 2024
0,4 giờ được ghi nhận
chơi lần cuối lúc 31 Thg10, 2024
RM_cc 22 Thg06, 2023 @ 10:28pm 
不许导,给我积分回去😡😡
Dx sin x=cos x,cos x = -sin x,tan x = sec2 x,cot x = -csc2 x,sec x = sec x tan x
f(x)->∫f(x)dx,k->kx,x^2113n->[1/(n+1)]x^(n+1),a^x->a^x/lna,sinx->-cosx,cosx->sinx,tanx->-lncosx,cotx->lnsinx。
∫kdx=kx+C
∫xadx=xα+1α+1+C
∫1xdx=ln|x|+C
∫sinxdx=cosx+C
cosxdx=sinx+C
∫1cos2xxdx=tanx+C
∫1sin2xxdx=cotx+C
∫axdx=axlna+C
∫exdx=ex+C
∫11+x2dx=arctanx+C
∫11x2√dx=arcsinx+C
∫coshxdx=sinhx+C
∫sinhxdx=coshx+C
∫tanxcosxdx=1cosx+C
∫cotxsinxdx=1sinx+C
RM_cc 22 Thg06, 2023 @ 10:28pm 
忍不住了,开导!🥵🥵🥵 (sinx)' = cosx   (cosx)' = - sinx   (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2   -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2   (secx)'=tanx·secx   (cscx)'=-cotx·cscx   (arcsinx)'=1/(1-x^2)^1/2   (arccosx)'=-1/(1-x^2)^1/2   (arctanx)'=1/(1+x^2)   (arccotx)'=-1/(1+x^2)   (arcsecx)'=1/(|x|(x^2-1)^1/2)   (arccscx)'=-1/(|x|(x^2-1)^1/2)   ④(sinhx)'=coshx   (coshx)'=sinhx   (tanhx)'=1/(coshx)^2=(sechx)^2   (coth)'=-1/(sinhx)^2=-(cschx)^2   (sechx)'=-tanhx·sechx   (cschx)'=-cothx·cschx   (arsinhx)'=1/(x^2+1)^1/2   (arcoshx)'=1/(x^2-1)^1/2   (artanhx)'=1/(x^2-1) (|x|1)   (arsechx)'=1/(x(1-x^2)^1/2)   (arcschx)'=1/(x(1+x^2)^1/2)
69岁老同志 13 Thg11, 2020 @ 8:29pm 
nb嗷
豪哥(StatTrak™)|白给 13 Thg10, 2020 @ 9:49am 
乌拉乌拉 闸总看过来 看过来 看过来
宇智波新之助 20 Thg12, 2019 @ 5:48pm 
刚刚,♥♥♥♥
名字是不重要的 1 Thg10, 2019 @ 3:03am 
呵呵,有趣