Publicstaticvoidmain
爸爸   Beijing, China
 
 
Momenteel offline
1 vastgelegde VAC-verbanning | Info
1700 dag(en) sinds vorige ban
Recente activiteit
25 uur in totaal
laatst gespeeld op 3 dec 2024
Prestatievoortgang   17 van de 43
62 uur in totaal
laatst gespeeld op 18 nov 2024
Prestatievoortgang   17 van de 49
0,4 uur in totaal
laatst gespeeld op 31 okt 2024
RM_cc 22 jun 2023 om 22:28 
不许导,给我积分回去😡😡
Dx sin x=cos x,cos x = -sin x,tan x = sec2 x,cot x = -csc2 x,sec x = sec x tan x
f(x)->∫f(x)dx,k->kx,x^2113n->[1/(n+1)]x^(n+1),a^x->a^x/lna,sinx->-cosx,cosx->sinx,tanx->-lncosx,cotx->lnsinx。
∫kdx=kx+C
∫xadx=xα+1α+1+C
∫1xdx=ln|x|+C
∫sinxdx=cosx+C
cosxdx=sinx+C
∫1cos2xxdx=tanx+C
∫1sin2xxdx=cotx+C
∫axdx=axlna+C
∫exdx=ex+C
∫11+x2dx=arctanx+C
∫11x2√dx=arcsinx+C
∫coshxdx=sinhx+C
∫sinhxdx=coshx+C
∫tanxcosxdx=1cosx+C
∫cotxsinxdx=1sinx+C
RM_cc 22 jun 2023 om 22:28 
忍不住了,开导!🥵🥵🥵 (sinx)' = cosx   (cosx)' = - sinx   (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2   -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2   (secx)'=tanx·secx   (cscx)'=-cotx·cscx   (arcsinx)'=1/(1-x^2)^1/2   (arccosx)'=-1/(1-x^2)^1/2   (arctanx)'=1/(1+x^2)   (arccotx)'=-1/(1+x^2)   (arcsecx)'=1/(|x|(x^2-1)^1/2)   (arccscx)'=-1/(|x|(x^2-1)^1/2)   ④(sinhx)'=coshx   (coshx)'=sinhx   (tanhx)'=1/(coshx)^2=(sechx)^2   (coth)'=-1/(sinhx)^2=-(cschx)^2   (sechx)'=-tanhx·sechx   (cschx)'=-cothx·cschx   (arsinhx)'=1/(x^2+1)^1/2   (arcoshx)'=1/(x^2-1)^1/2   (artanhx)'=1/(x^2-1) (|x|1)   (arsechx)'=1/(x(1-x^2)^1/2)   (arcschx)'=1/(x(1+x^2)^1/2)
69岁老同志 13 nov 2020 om 20:29 
nb嗷
豪哥(StatTrak™)|白给 13 okt 2020 om 9:49 
乌拉乌拉 闸总看过来 看过来 看过来
宇智波新之助 20 dec 2019 om 17:48 
刚刚,♥♥♥♥
名字是不重要的 1 okt 2019 om 3:03 
呵呵,有趣