Instalar o Steam
Iniciar sessão
|
Idioma
简体中文 (Chinês Simplificado)
繁體中文 (Chinês Tradicional)
日本語 (Japonês)
한국어 (Coreano)
ไทย (Tailandês)
Български (Búlgaro)
Čeština (Checo)
Dansk (Dinamarquês)
Deutsch (Alemão)
English (Inglês)
Español-España (Espanhol de Espanha)
Español-Latinoamérica (Espanhol da América Latina)
Ελληνικά (Grego)
Français (Francês)
Italiano (Italiano)
Bahasa Indonesia (Indonésio)
Magyar (Húngaro)
Nederlands (Holandês)
Norsk (Norueguês)
Polski (Polaco)
Português (Brasil)
Română (Romeno)
Русский (Russo)
Suomi (Finlandês)
Svenska (Sueco)
Türkçe (Turco)
Tiếng Việt (Vietnamita)
Українська (Ucraniano)
Relatar problema de tradução
░█░░░░░░░░▀▄░░░░░░▄░
█░░▀░░▀░░░░░▀▄▄░░█░█
█░▄░█▀░▄░░░░░░░▀▀░░█
█░░▀▀▀▀░░░░░░░░░░░░█
█░░░░░░░░░░░░░░░░░░█
█░░░░░░░░░░░░░░░░░░█
░█░░▄▄░░▄▄▄▄░░▄▄░░█░
░█░▄▀█░▄▀░░█░▄▀█░▄▀░
░░▀░░░▀░░░░░▀░░░▀░░░
That’s a combined mass of 380,000,0 kg of dic.
Now we must make an approximation. For simplicity’s same, let’s assume the ♥♥♥♥♥♥♥ are all evenly lined up in a ring around the equator. The equation for the inertia of a ring is I = mass*radius2. The radius of Earth is about 6.371 million meters. Therefore, the radius of the approximated dic ring is 6,371 + 0.80 = 6,371,000.8 meters
I = 380,000,0006,371,000.82 = 1,54241022. The earth has a moment of inertia I = 8.04x1037 kg*m2. The earth rotates at a moderate angular velocity of 7.2921159 x 10-5 radians/second.
Using the Conservation of Angular Momentum we can find the new rotation of the earth. L=Iomega = 8.04x1037 kgm2 * 7.2921159 x 10-5 = 5.862861033. 5.862861033 = 8
░░░░░▄█▌▀▄▓▓▄▄▄▄▀▀▀▄▓▓▓▓▓▌█
░░░▄█▀▀▄▓█▓▓▓▓▓▓▓▓▓▓▓▓▀░▓▌█
░░█▀▄▓▓▓███▓▓▓███▓▓▓▄░░▄▓▐█▌
░█▌▓▓▓▀▀▓▓▓▓███▓▓▓▓▓▓▓▄▀▓▓▐█
▐█▐██▐░▄▓▓▓▓▓▀▄░▀▓▓▓▓▓▓▓▓▓▌█▌
█▌███▓▓▓▓▓▓▓▓▐░░▄▓▓███▓▓▓▄▀▐█
█▐█▓▀░░▀▓▓▓▓▓▓▓▓▓██████▓▓▓▓▐█
▌▓▄▌▀░▀░▐▀█▄▓▓██████████▓▓▓▌█▌
▌▓▓▓▄▄▀▀▓▓▓▀▓▓▓▓▓▓▓▓█▓█▓█▓▓▌█▌
█▐▓▓▓▓▓▓▄▄▄▓▓▓▓▓▓█▓█▓█▓█▓▓▓▐█