Hugh Jass
Дмитрий   Poltava, Poltavs'ka Oblast', Ukraine
 
 
d\/dx((x sin^(-1)(x))\/sqrt(1-x^2)+log(sqrt(1-x^2))) = (sin^(-1)(x))\/(1-x^2)^(3\/2)
Possible intermediate steps:
Possible derivation:\nd\/dx((x sin^(-1)(x))\/sqrt(1-x^2)+log(sqrt(1-x^2)))\nDifferentiate the sum term by term:\n = d\/dx((x sin^(-1)(x))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = x and v = (sin^(-1)(x))\/sqrt(1-x^2):\n = d\/dx(log(sqrt(1-x^2)))+(sin^(-1)(x) d\/dx(x))\/sqrt(1-x^2)+x d\/dx((sin^(-1)(x))\/sqrt(1-x^2))\nSimplify the expression:\n = (sin^(-1)(x) (d\/dx(x)))\/sqrt(1-x^2)+x (d\/dx((sin^(-1)(x))\/sqrt(1-x^2)))+d\/dx(log(sqrt(1-x^2)))\nThe derivative of x is 1:\n = x (d\/dx((sin^(-1)(x))\/sqrt(1-x^2)))+d\/dx(log(sqrt(1-x^2)))+(1 sin^(-1)(x))\/sqrt(1-x^2)\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = 1\/sqrt(1-x^2) and v = sin^(-1)(x):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+sin^(-1)(x) d\/dx(1\/sqrt(1-x^2))+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2) x\nUsing the chain rule, d\/dx(1\/sqrt(1-x^2)) = d\/( du)1\/sqrt(u) ( du)\/( dx), where u = 1-x^2 and ( d)\/( du)(1\/sqrt(u)) = -1\/(2 u^(3\/2)):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)+(-d\/dx(1-x^2))\/(2 (1-x^2)^(3\/2)) sin^(-1)(x))\nDifferentiate the sum term by term and factor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)-(d\/dx(1)-d\/dx(x^2) sin^(-1)(x))\/(2 (1-x^2)^(3\/2)))\nThe derivative of 1 is zero:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)-(sin^(-1)(x) (-(d\/dx(x^2))+0))\/(2 (1-x^2)^(3\/2)))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x ((sin^(-1)(x) (d\/dx(x^2)))\/(2 (1-x^2)^(3\/2))+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\nUse the power rule, d\/dx(x^n) = n x^(n-1), where n = 2: d\/dx(x^2) = 2 x:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)+(2 x sin^(-1)(x))\/(2 (1-x^2)^(3\/2)))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x ((x sin^(-1)(x))\/(1-x^2)^(3\/2)+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\n
sin^(-1)(x) is 1\/sqrt(1-x^2):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((x sin^(-1)(x))\/(1-x^2)^(3\/2)+1\/sqrt(1-x^2)\/sqrt(1-x^2))\n
\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(log(sqrt(1-x^2)))\nSimplify log(sqrt(1-x^2))
log(a^b) = b log(a):\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(1\/2 log(1-x^2))\nFactor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+(d\/dx(log(1-x^2)))\/2\nUsing the chain rule, d\/dx(log(1-x^2)) = ( dlog(u))\/( du) ( du)\/( dx), where u = 1-x^2 and ( d)\/( du)(log(u)) = 1\/u:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+1\/2(d\/dx(1-x^2))\/(1-x^2)\nDifferentiate the sum term by term and factor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(1)-d\/dx(x^2)\/(2 (1-x^2))\nThe derivative of 1 is zero:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+(-(d\/dx(x^2))+0)\/(2 (1-x^2))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))-(d\/dx(x^2))\/(2 (1-x^2))\nUse the power rule, d\/dx(x^n) = n x^(n-1), where n = 2: d\/dx(x^2) = 2 x:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))-2 x\/(2 (1-x^2))\nSimplify the expression:\nAnswer: | \n | = -x\/(1-x^2)+(sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))
Currently Online
Screenshot Showcase
Dark Travels 2
7 4
Rarest Achievement Showcase
Recent Activity
3.5 hrs on record
last played on 23 Jan
16.6 hrs on record
last played on 23 Jan
10.2 hrs on record
last played on 23 Jan
queen's speech 21 Aug, 2015 @ 11:27am 
Signed by Morrison with <3
gosu 14 Jun, 2015 @ 12:22pm 
Hello , this is the administrator of PornHub™ we have noticed you  haven’t logged in for 2 days, we’re just checking to see if everything  is okay
~~ 8 Jan, 2015 @ 2:55am 
░░░░░░░█▐▓▓░████▄▄▄█▀▄▓▓▓▌█
░░░░░▄█▌▀▄▓▓▄▄▄▄▀▀▀▄▓▓▓▓▓▌█
░░░▄█▀▀▄▓█▓▓▓▓▓▓▓▓▓▓▓▓▀░▓▌█
░░█▀▄▓▓▓███▓▓▓███▓▓▓▄░░▄▓▐█▌
░█▌▓▓▓▀▀▓▓▓▓███▓▓▓▓▓▓▓▄▀▓▓▐█
▐█▐██▐░▄▓▓▓▓▓▀▄░▀▓▓▓▓▓▓▓▓▓▌█▌
█▌███▓▓▓▓▓▓▓▓▐░░▄▓▓███▓▓▓▄▀▐█
█▐█▓▀░░▀▓▓▓▓▓▓▓▓▓██████▓▓▓▓▐█
▌▓▄▌▀░▀░▐▀█▄▓▓█Слава Украине█▓▌█▌
▌▓▓▓▄▄▀▀▓▓▓▀▓▓▓▓▓▓▓▓█▓█▓█▓▓▌█▌
█▐▓▓▓▓▓▓▄▄▄▓▓▓▓▓▓█▓█▓█▓█▓▓▓▐█
Дядя Гай 29 Nov, 2014 @ 1:47am 
/` ̄ ̄ `—————-----------.___________________________/`|.
..../-------------Порву За Друзей ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄|
.../..||||||||||||||||||||||||||||||——————————————-------------——/
...\;;;;;;;OO——;;/\`̄̄\\ ̄ ̄ ̄ ̄ ̄ ̄ ̄`'|̄ ̄|"`—---\\\\\\\\\\-----------------——/ ̄ ̄ ̄ ̄ ̄ ̄
...."\;;;OOOOO;'.\\.`\\....... |.|../`.......\\\\\\\\\\
.......(///////////////...\\_____.[]'............\\\\\\\\\\\
......(///////////......................................\\\\\\\\\\\\
.....(///////////..........................................\\\\\\\\\\\\\
....(///////////.............................................\\\\\\\\\\\\\\
...(////////////.................................................\\\\\\\\\\\\\\
...̄ ̄ ̄ ̄̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
76561198149809913 18 Aug, 2014 @ 8:45am 
+rep
QotsKo 11 Aug, 2014 @ 3:33pm 
+rep