Hugh Jass
Дмитрий   Poltava, Poltavs'ka Oblast', Ukraine
 
 
d\/dx((x sin^(-1)(x))\/sqrt(1-x^2)+log(sqrt(1-x^2))) = (sin^(-1)(x))\/(1-x^2)^(3\/2)
Possible intermediate steps:
Possible derivation:\nd\/dx((x sin^(-1)(x))\/sqrt(1-x^2)+log(sqrt(1-x^2)))\nDifferentiate the sum term by term:\n = d\/dx((x sin^(-1)(x))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = x and v = (sin^(-1)(x))\/sqrt(1-x^2):\n = d\/dx(log(sqrt(1-x^2)))+(sin^(-1)(x) d\/dx(x))\/sqrt(1-x^2)+x d\/dx((sin^(-1)(x))\/sqrt(1-x^2))\nSimplify the expression:\n = (sin^(-1)(x) (d\/dx(x)))\/sqrt(1-x^2)+x (d\/dx((sin^(-1)(x))\/sqrt(1-x^2)))+d\/dx(log(sqrt(1-x^2)))\nThe derivative of x is 1:\n = x (d\/dx((sin^(-1)(x))\/sqrt(1-x^2)))+d\/dx(log(sqrt(1-x^2)))+(1 sin^(-1)(x))\/sqrt(1-x^2)\nUse the product rule, d\/dx(u v) = v ( du)\/( dx)+u ( dv)\/( dx), where u = 1\/sqrt(1-x^2) and v = sin^(-1)(x):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+sin^(-1)(x) d\/dx(1\/sqrt(1-x^2))+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2) x\nUsing the chain rule, d\/dx(1\/sqrt(1-x^2)) = d\/( du)1\/sqrt(u) ( du)\/( dx), where u = 1-x^2 and ( d)\/( du)(1\/sqrt(u)) = -1\/(2 u^(3\/2)):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)+(-d\/dx(1-x^2))\/(2 (1-x^2)^(3\/2)) sin^(-1)(x))\nDifferentiate the sum term by term and factor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)-(d\/dx(1)-d\/dx(x^2) sin^(-1)(x))\/(2 (1-x^2)^(3\/2)))\nThe derivative of 1 is zero:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)-(sin^(-1)(x) (-(d\/dx(x^2))+0))\/(2 (1-x^2)^(3\/2)))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x ((sin^(-1)(x) (d\/dx(x^2)))\/(2 (1-x^2)^(3\/2))+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\nUse the power rule, d\/dx(x^n) = n x^(n-1), where n = 2: d\/dx(x^2) = 2 x:\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((d\/dx(sin^(-1)(x)))\/sqrt(1-x^2)+(2 x sin^(-1)(x))\/(2 (1-x^2)^(3\/2)))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x ((x sin^(-1)(x))\/(1-x^2)^(3\/2)+(d\/dx(sin^(-1)(x)))\/sqrt(1-x^2))+d\/dx(log(sqrt(1-x^2)))\n
sin^(-1)(x) is 1\/sqrt(1-x^2):\n = (sin^(-1)(x))\/sqrt(1-x^2)+d\/dx(log(sqrt(1-x^2)))+x ((x sin^(-1)(x))\/(1-x^2)^(3\/2)+1\/sqrt(1-x^2)\/sqrt(1-x^2))\n
\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(log(sqrt(1-x^2)))\nSimplify log(sqrt(1-x^2))
log(a^b) = b log(a):\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(1\/2 log(1-x^2))\nFactor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+(d\/dx(log(1-x^2)))\/2\nUsing the chain rule, d\/dx(log(1-x^2)) = ( dlog(u))\/( du) ( du)\/( dx), where u = 1-x^2 and ( d)\/( du)(log(u)) = 1\/u:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+1\/2(d\/dx(1-x^2))\/(1-x^2)\nDifferentiate the sum term by term and factor out constants:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+d\/dx(1)-d\/dx(x^2)\/(2 (1-x^2))\nThe derivative of 1 is zero:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))+(-(d\/dx(x^2))+0)\/(2 (1-x^2))\nSimplify the expression:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))-(d\/dx(x^2))\/(2 (1-x^2))\nUse the power rule, d\/dx(x^n) = n x^(n-1), where n = 2: d\/dx(x^2) = 2 x:\n = (sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))-2 x\/(2 (1-x^2))\nSimplify the expression:\nAnswer: | \n | = -x\/(1-x^2)+(sin^(-1)(x))\/sqrt(1-x^2)+x (1\/(1-x^2)+(x sin^(-1)(x))\/(1-x^2)^(3\/2))
Off-line
Capturas de tela favoritas
Dark Travels 2
7 4
Atividade recente
3,5 horas registradas
jogado pela última vez em 23 de jan.
16,6 horas registradas
jogado pela última vez em 23 de jan.
Conquistas   34 de 99
10,2 horas registradas
jogado pela última vez em 23 de jan.
Conquistas   32 de 307
queen's speech 21/ago./2015 às 11:27 
Signed by Morrison with <3
gosu 14/jun./2015 às 12:22 
Hello , this is the administrator of PornHub™ we have noticed you  haven’t logged in for 2 days, we’re just checking to see if everything  is okay
~~ 8/jan./2015 às 2:55 
░░░░░░░█▐▓▓░████▄▄▄█▀▄▓▓▓▌█
░░░░░▄█▌▀▄▓▓▄▄▄▄▀▀▀▄▓▓▓▓▓▌█
░░░▄█▀▀▄▓█▓▓▓▓▓▓▓▓▓▓▓▓▀░▓▌█
░░█▀▄▓▓▓███▓▓▓███▓▓▓▄░░▄▓▐█▌
░█▌▓▓▓▀▀▓▓▓▓███▓▓▓▓▓▓▓▄▀▓▓▐█
▐█▐██▐░▄▓▓▓▓▓▀▄░▀▓▓▓▓▓▓▓▓▓▌█▌
█▌███▓▓▓▓▓▓▓▓▐░░▄▓▓███▓▓▓▄▀▐█
█▐█▓▀░░▀▓▓▓▓▓▓▓▓▓██████▓▓▓▓▐█
▌▓▄▌▀░▀░▐▀█▄▓▓█Слава Украине█▓▌█▌
▌▓▓▓▄▄▀▀▓▓▓▀▓▓▓▓▓▓▓▓█▓█▓█▓▓▌█▌
█▐▓▓▓▓▓▓▄▄▄▓▓▓▓▓▓█▓█▓█▓█▓▓▓▐█
Дядя Гай 29/nov./2014 às 1:47 
/` ̄ ̄ `—————-----------.___________________________/`|.
..../-------------Порву За Друзей ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄|
.../..||||||||||||||||||||||||||||||——————————————-------------——/
...\;;;;;;;OO——;;/\`̄̄\\ ̄ ̄ ̄ ̄ ̄ ̄ ̄`'|̄ ̄|"`—---\\\\\\\\\\-----------------——/ ̄ ̄ ̄ ̄ ̄ ̄
...."\;;;OOOOO;'.\\.`\\....... |.|../`.......\\\\\\\\\\
.......(///////////////...\\_____.[]'............\\\\\\\\\\\
......(///////////......................................\\\\\\\\\\\\
.....(///////////..........................................\\\\\\\\\\\\\
....(///////////.............................................\\\\\\\\\\\\\\
...(////////////.................................................\\\\\\\\\\\\\\
...̄ ̄ ̄ ̄̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
76561198149809913 18/ago./2014 às 8:45 
+rep
QotsKo 11/ago./2014 às 15:33 
+rep