dumbledore
Singapore
 
 
eh
Currently Offline
Favorite Game
2,342
Hours played
1
Achievements
Recent Activity
50 hrs on record
last played on 30 Aug
236 hrs on record
last played on 18 Jun
2,342 hrs on record
last played on 31 Jan
76561199410685328 25 Mar @ 6:36am 
lovely profile, lets play
Radforr 2 Feb @ 12:53pm 
+REP )
Gᵣeen🅷🅾🆁🅽 27 Dec, 2021 @ 8:21am 
hacker
Jaiie 1 Jun, 2021 @ 5:26am 
I like your green beret bro
Detective Benoit Blanc 15 May, 2021 @ 11:28pm 
___________________________######_________
___________________________######_________
____________________________####__________
_____________________________##___________
___________________________######_________
__________________________#######_________
__####__________________#########_________
_######________________###_######_________
_######_______________###__######_________
__####_______________###___######_________
_____##################____######_________
_____##################+rep#######________
______#################____######_________
_______###_______#####_____######_________
______###_______#####______######_________
_____###________#####______######_________
#######_________##########_##############__
___________________________________________
Detective Benoit Blanc 26 Apr, 2021 @ 6:05am 
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average pen15 height of about 80 cm off the ground. The average pen15 weighs about 100 grams.

That's a combined mass of 380,000,000 kg of pen15s.

Now we must make an approximation. For simplicity's sake, let us assume the pen15 are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated pen15 ring is 6,371,000 + 0.80 = 6,371,000.8 meters.

I = 380,000,000*6,371,000.8^2 = 1.5424*10^22

The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.