Steam'i Yükleyin
giriş
|
dil
简体中文 (Basitleştirilmiş Çince)
繁體中文 (Geleneksel Çince)
日本語 (Japonca)
한국어 (Korece)
ไทย (Tayca)
Български (Bulgarca)
Čeština (Çekçe)
Dansk (Danca)
Deutsch (Almanca)
English (İngilizce)
Español - España (İspanyolca - İspanya)
Español - Latinoamérica (İspanyolca - Latin Amerika)
Ελληνικά (Yunanca)
Français (Fransızca)
Italiano (İtalyanca)
Bahasa Indonesia (Endonezce)
Magyar (Macarca)
Nederlands (Hollandaca)
Norsk (Norveççe)
Polski (Lehçe)
Português (Portekizce - Portekiz)
Português - Brasil (Portekizce - Brezilya)
Română (Rumence)
Русский (Rusça)
Suomi (Fince)
Svenska (İsveççe)
Tiếng Việt (Vietnamca)
Українська (Ukraynaca)
Bir çeviri sorunu bildirin
___________________________######_________
____________________________####__________
_____________________________##___________
___________________________######_________
__________________________#######_________
__####__________________#########_________
_######________________###_######_________
_######_______________###__######_________
__####_______________###___######_________
_____##################____######_________
_____##################+rep#######________
______#################____######_________
_______###_______#####_____######_________
______###_______#####______######_________
_____###________#####______######_________
#######_________##########_##############__
___________________________________________
That's a combined mass of 380,000,000 kg of pen15s.
Now we must make an approximation. For simplicity's sake, let us assume the pen15 are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated pen15 ring is 6,371,000 + 0.80 = 6,371,000.8 meters.
I = 380,000,000*6,371,000.8^2 = 1.5424*10^22
The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.