dumbledore
Singapore
 
 
eh
Şu Anda Çevrimdışı
Favori Oyun
2.342
Saat oynandı
1
Başarım
Son Etkinlikler
kayıtlarda 50 saat
son oynanma: 30 Ağu
kayıtlarda 236 saat
son oynanma: 18 Haz
kayıtlarda 2.342 saat
son oynanma: 31 Oca
76561199410685328 25 Mar @ 6:36 
lovely profile, lets play
Radforr 2 Şub @ 12:53 
+REP )
Gᵣeen🅷🅾🆁🅽 27 Ara 2021 @ 8:21 
hacker
Jaiie 1 Haz 2021 @ 5:26 
I like your green beret bro
Detective Benoit Blanc 15 May 2021 @ 23:28 
___________________________######_________
___________________________######_________
____________________________####__________
_____________________________##___________
___________________________######_________
__________________________#######_________
__####__________________#########_________
_######________________###_######_________
_######_______________###__######_________
__####_______________###___######_________
_____##################____######_________
_____##################+rep#######________
______#################____######_________
_______###_______#####_____######_________
______###_______#####______######_________
_____###________#####______######_________
#######_________##########_##############__
___________________________________________
Detective Benoit Blanc 26 Nis 2021 @ 6:05 
If every male on earth got a boner at the same time, the earth's rotation would slow down. Assume there are about 3.8 billion males, with an average pen15 height of about 80 cm off the ground. The average pen15 weighs about 100 grams.

That's a combined mass of 380,000,000 kg of pen15s.

Now we must make an approximation. For simplicity's sake, let us assume the pen15 are all evenly lined up in a ring around the equator. The equation for moment of inertia of a ring is I = mass*radius^2. The radius of earth is about 6.371 million meters. Therefore the radius of the approximated pen15 ring is 6,371,000 + 0.80 = 6,371,000.8 meters.

I = 380,000,000*6,371,000.8^2 = 1.5424*10^22

The Earth has a moment of inertia, I = 8.04×10^37 kg*m^2. The Earth rotates at a moderate angular velocity of 7.2921159 ×10^−5 radians/second.