Install Steam
login
|
language
简体中文 (Simplified Chinese)
繁體中文 (Traditional Chinese)
日本語 (Japanese)
한국어 (Korean)
ไทย (Thai)
Български (Bulgarian)
Čeština (Czech)
Dansk (Danish)
Deutsch (German)
Español - España (Spanish - Spain)
Español - Latinoamérica (Spanish - Latin America)
Ελληνικά (Greek)
Français (French)
Italiano (Italian)
Bahasa Indonesia (Indonesian)
Magyar (Hungarian)
Nederlands (Dutch)
Norsk (Norwegian)
Polski (Polish)
Português (Portuguese - Portugal)
Português - Brasil (Portuguese - Brazil)
Română (Romanian)
Русский (Russian)
Suomi (Finnish)
Svenska (Swedish)
Türkçe (Turkish)
Tiếng Việt (Vietnamese)
Українська (Ukrainian)
Report a translation problem
然後有人又給你一隻兔子
現在,如果你去計算你有幾隻兔子,你會算出你有兩隻
所以一隻兔子加一隻兔子等於兩隻兔子,故一加一等於二(1+1=2)
這就是數學的基礎原理
現在,你學會了數學的基礎邏輯,讓我們来用一個淺顯易懂的例題,套入我們剛學會的算數來加深學習印象吧!
例題:
∫exp[-(x-a)2/2]dx=(√2π)
上下界是-∞,+∞的瑕積分
求∫x2exp[-(x-a)2/2]dx=?
已知∫exp[-(x-a)2/2]dx=(√2π)
→∫1/(√2π)exp[-(x-a)2/2]dx=1
這是一個常態分配, ~N(a, 1)
E(x)=a, Var(x)=1=E(x2)-(E(x))2
∴E(x2) = Var(x)+(E(x))2=1+a2
E(x2) =∫1/(√2π)x2exp[-(x-a)2/2]dx
= Var(x)+(E(x))2=1+a2…(1)
Equation (1)兩邊同成(√2π)
得到(√2π)∫1/(√2π)x2exp[-(x-a)2/2]dx
=(√2π)( 1+a2) 得到答案