9
Products
reviewed
66
Products
in account

Recent reviews by Fy1

Showing 1-9 of 9 entries
No one has rated this review as helpful yet
11.7 hrs on record (0.6 hrs at review time)
今天没导管 差评
Posted 11 August, 2023.
Was this review helpful? Yes No Funny Award
No one has rated this review as helpful yet
2,045.6 hrs on record (1,109.9 hrs at review time)
fps的终点
Posted 21 February, 2023.
Was this review helpful? Yes No Funny Award
8 people found this review helpful
0.0 hrs on record
帽子和面具不能同时戴
Posted 27 April, 2022.
Was this review helpful? Yes No Funny Award
901 people found this review helpful
499 people found this review funny
2
3
7
3
2
7
15.3 hrs on record (6.6 hrs at review time)
忍不住了,开导
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
Posted 13 April, 2022.
Was this review helpful? Yes No Funny Award
2 people found this review helpful
24.6 hrs on record (23.5 hrs at review time)
忍不住了,开导
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
Posted 13 April, 2022.
Was this review helpful? Yes No Funny Award
No one has rated this review as helpful yet
38.2 hrs on record (27.3 hrs at review time)
忍不住了,开导
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx
(arsinhx)'=1/(x^2+1)^1/2
(arcoshx)'=1/(x^2-1)^1/2
(artanhx)'=1/(x^2-1) (|x|<1)
(arcothx)'=1/(x^2-1) (|x|>1)
(arsechx)'=1/(x(1-x^2)^1/2)
(arcschx)'=1/(x(1+x^2)^1/2)
Posted 13 April, 2022.
Was this review helpful? Yes No Funny Award
No one has rated this review as helpful yet
127.9 hrs on record (23.7 hrs at review time)
上网课的时候玩
Posted 13 April, 2022.
Was this review helpful? Yes No Funny Award
1 person found this review helpful
15.7 hrs on record (1.2 hrs at review time)
太爽了
Posted 26 June, 2021.
Was this review helpful? Yes No Funny Award
No one has rated this review as helpful yet
1 person found this review funny
1,435.8 hrs on record (548.9 hrs at review time)
CS:GO Review
真的太好玩了,弟弟都吐泡沫了
Posted 27 April, 2021.
Was this review helpful? Yes No Funny Award
Showing 1-9 of 9 entries