ПИЗДА АБРИКОСА
Вагинотерминатор   Charlottetown, Prince Edward Island, Canada
 
 
未提供任何資訊。
精選藝術作品展示欄
.
MEDIA SIGN
----- Media ------

DAGER

----- Сyber ------

sprinter
kraghen
SK FLOSSTRADAMUS
Tapewaare
xKacpersky
KENSi
藝術作品展示欄
評論展示欄
已遊玩 132 小時
Все ядерные боеприпасы могут быть разделены на две основные категории:

ядерные («атомные») — однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер (урана-235 или плутония-239) с образованием более лёгких элементов;
ядерные («атомные») — однофазные или одноступенчатые взрывные устройства с термоядерным усилением (бустингом), которые подразделяются на устройства с внутренним бустированием, и на устройства с внешним бустированием.
термоядерные («водородные») — двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжёлых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса.
термоядерные («водородные») — трехфазные или трехступенчатые взрывные устройства, в которых последовательно развиваются три физических процесса, локализованных в различных областях пространства. В отдельную категорию следует выделить трехступенчатое термоядерное оружие, используемое для создания термоядерных взрывных устройств сверхбольшой мощности (мощностью от нескольких, предположительно, от 2,5—5 мегатонн до десятков мегатонн. Связано это с тем, что 1 ступень деления не может обеспечить достаточное количество энергии рентгеновского излучения, которое необходимо для обеспечения взрыва «больших» термоядерных ступеней. В трехступенчатых устройствах 1 ступень деления (с мощностью взрыва до десятков килотонн), используется для радиационной имплозии 2 («небольшой») термоядерной ступени, (с мощностью взрыва в несколько сотен килотонн), и уже излучение этой 2 термоядерной ступени (вместе с излучением 1 ступени) используется для радиационной имплозии 3 («большой») термоядерной ступени, с мощностью взрыва от 2,5—5 мегатонн до многих десятков мегатонн. Примером трехступенчатого оружия созданного в СССР являлась так называемая «Царь-бомба» (АН-602), в которой 2 небольшие 1 ступени деления (с мощностью взрыва до десятков килотонн), использовались для радиационной имплозии 2 («небольших») термоядерных 2 ступеней, (с мощностью взрыва по 750 килотонн), и уже излучение этих 2 термоядерных ступеней (вместе с излучением 1 ступеней) использовалось для радиационной имплозии 3 («большой») термоядерной ступени, (с мощностью взрыва от 50 мегатонн до 100 мегатонн). В «Царь-бомбе» (АН-602) две первые и две вторые ступени размещались симметрично с 2 сторон от третьей («большой») термоядерной ступени, по так называемой «бифилярной» схеме.
По этому же принципу, который использовали для создания трехфазных или трехступенчатых взрывных устройств, возможно создание термоядерного оружия с еще большим числом ступеней, например, 4 и более ступеней, с мощностью в сотни и тысячи мегатонн (гигатонны), но по целому ряду причин, никакой практической необходимости в этом нет.

Реакция термоядерного синтеза, как правило, развивается внутри делящейся сборки и служит мощным источником дополнительных нейтронов. Только ранние ядерные устройства в 1940-х годах, немногочисленные бомбы пушечной сборки в 1950-х, некоторые ядерные артиллерийские снаряды, а также, возможно, изделия слаборазвитых в плане ядерных технологий государств (ЮАР, Пакистан, КНДР) не используют термоядерный синтез в качестве усилителя мощности ядерного взрыва или главного источника энергии взрыва.

Вторая ступень любого термоядерного взрывного устройства может быть оснащена тампером — отражателем нейтронов. Тампер изготовляется из 238U, который эффективно делится от быстрых нейтронов реакции синтеза. Так достигается многократное увеличение общей мощности взрыва и чудовищный рост количества радиоактивных осадков. После знаменитой книги «Ярче тысячи солнц», написанной Р. Юнгом в 1958 году по «горячим следам» Манхэттенского проекта, такого рода «грязные» термоядерные боеприпасы довольно часто (с подачи Р. Юнга) принято называть FFF (fission-fusion-fission; деление-синтез-деление) или трёхфазными. Однако этот термин не вполне корректен, и его не стоит использовать. Почти все «FFF» относятся к двухфазным и различаются только материалом тампера, который в «чистом» боеприпасе может быть выполнен из свинца, вольфрама и т. д. , а в «грязном» из 238U. По сведениям из расследования скандалов, связанных с ядерным шпионажем, тампер в современных малогабаритных и мощных боеприпасах изготовляется из 235U, который эффективно делится от любых (быстрых и медленных) нейтронов реакции синтеза, и позволят значительно увеличить мощность взрыва такого боеприпаса, по сравнению с тампером из 238U. Также тампер 2 ступени может быть изготовлен, кроме 238U, или из обогащенного урана с различной степенью обогащения 235U, или из 239Pu, и различных комбинаций указанных выше материалов.

Исключением являются устройства типа «Слойки» Сахарова, которые следует отнести к однофазным с бустированием, хотя они имеют слоистую структуру взрывного заряда (ядро из плутония — слой дейтерида лития-6 — слой урана-238). В США такое устройство получило название «Alarm Clock» («Часы с будильником»). Схема последовательного чередования реакций деления и синтеза реализована в двухфазных боеприпасах, в которых можно насчитать до 6 слоёв при весьма «умеренной» мощности. Примером служит относительно современная ракетная боеголовка W88, в которой первая секция (primary) содержит два слоя, вторая секция (secondary) имеет три слоя, и ещё одним слоем является общая для двух секций оболочка из урана-238 (см. рисунок).

Иногда в отдельную категорию выделяется нейтронное оружие — двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50—75 % энергии получается за счёт термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счёт этого достигается существенно больший вес таких поражающих факторов, как нейтронное излучение и наведённая радиоактивность (до 30 % от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танковых войск и живой силы. Существуют мифические представления о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт) (1 кт = 1000 т, 1 Мт = 1 000 000 т). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса, и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

сверхмалые — менее 1 кт;
малые (1—10 кт);
средние (10 — 100 кт);
крупные (большой мощности) — от 100 кт до 1 Мт;
сверхкрупные (сверхбольшой мощности) — свыше 1 Мт.
精選藝術作品展示欄
Lexa
最愛遊戲
藝術作品展示欄
Melody sign
1
最近動態
總時數 1,168 小時
最後執行於 1 月 25 日
500 經驗值
成就進度   1 / 1
總時數 4.6 小時
最後執行於 1 月 21 日
總時數 132 小時
最後執行於 1 月 21 日
76561199002586307 2024 年 6 月 18 日 下午 12:15 
ein Zeichen von mir an dich, vergiss mich nie
DAGER 2024 年 4 月 29 日 上午 11:16 
РЕСПЕКТ
sprinter 2024 年 4 月 27 日 下午 6:54 
lux:iwanttobelieve:
uchobucho 2024 年 4 月 24 日 下午 2:46 
kraghen =D
SK FLOSSTRADAMUS 2024 年 4 月 22 日 上午 8:13 
signed by FLOSS
Tapewaare 2024 年 4 月 18 日 下午 6:20 
Signed by Tapewaare!