安装 Steam
登录
|
语言
繁體中文(繁体中文)
日本語(日语)
한국어(韩语)
ไทย(泰语)
български(保加利亚语)
Čeština(捷克语)
Dansk(丹麦语)
Deutsch(德语)
English(英语)
Español-España(西班牙语 - 西班牙)
Español - Latinoamérica(西班牙语 - 拉丁美洲)
Ελληνικά(希腊语)
Français(法语)
Italiano(意大利语)
Bahasa Indonesia(印度尼西亚语)
Magyar(匈牙利语)
Nederlands(荷兰语)
Norsk(挪威语)
Polski(波兰语)
Português(葡萄牙语 - 葡萄牙)
Português-Brasil(葡萄牙语 - 巴西)
Română(罗马尼亚语)
Русский(俄语)
Suomi(芬兰语)
Svenska(瑞典语)
Türkçe(土耳其语)
Tiếng Việt(越南语)
Українська(乌克兰语)
报告翻译问题
⠄⠄⣼⢀⣿⣿⣿⣿⣏⡏⠄⠹⣿⣿⣿⣿⣿⣿⣿⣿⣧⢻⣿⣿⣿⣿⡆⠄⠄
⠄⠄⡟⣼⣿⣿⣿⣿⣿⠄⠄⠄⠈⠻⣿⣿⣿⣿⣿⣿⣿⣇⢻⣿⣿⣿⣿⠄⠄
⠄⢰⠃⣿⣿⠿⣿⣿⣿⠄⠄⠄⠄⠄⠄⠙⠿⣿⣿⣿⣿⣿⠄⢿⣿⣿⣿⡄⠄
⠄⢸⢠⣿⣿⣧⡙⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄⠈⠛⢿⣿⣿⡇⠸⣿⡿⣸⡇⠄
⠄⠈⡆⣿⣿⣿⣿⣦⡙⠳⠄⠄⠄⠄⠄⠄⢀⣠⣤⣀⣈⠙⠃⠄⠿⢇⣿⡇⠄
⠄⠄⡇⢿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⣠⣶⣿⣿⣿⣿⣿⣿⣷⣆⡀⣼⣿⡇⠄
⠄⠄⢹⡘⣿⣿⣿⢿⣷⡀⠄⢀⣴⣾⣟⠉⠉⠉⠉⣽⣿⣿⣿⣿⠇⢹⣿⠃⠄
⠄⠄⠄⢷⡘⢿⣿⣎⢻⣷⠰⣿⣿⣿⣿⣦⣀⣀⣴⣿⣿⣿⠟⢫⡾⢸⡟⠄.
⠄⠄⠄⠄⠻⣦⡙⠿⣧⠙⢷⠙⠻⠿⢿⡿⠿⠿⠛⠋⠉⠄⠂⠘⠁⠞⠄⠄⠄
⠄⠄⠄⠄⠄⠈⠙⠑⣠⣤⣴⡖⠄⠿⣋⣉⣉⡁⠄⢾⣦⠄⠄⠄⠄⠄⠄⠄⠄
When we bring the cube into the fourth dimension, we begin to experience some counterintuitive math. We extrude the cube in a direction perpendicular to all of the first three. This is impossible within the third dimension because there are only 3 dimensions which the cube is already expanded in. When we add the fourth dimension, in order to maintain the properties of the cube of all angles being 90 degrees and all sides being the same, we must extrude in this new dimension.
Cubes in the fourth dimensions are technically called tesseracts. Objects in 4D differ in length, width, height, and trength. Superimposing trength on any of the previous dimensions gives an object in the subsequent dimensions a trength of 0, or a value that is infinitely small. All of the edges of a tesseract are the same, and all of the angles are right. This makes sense in theory, but when we begin to imagine what a tesseract would look like, we are bound by our 3-dimensional minds.